Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nature ; 595(7868): 572-577, 2021 07.
Article in English | MEDLINE | ID: covidwho-1246378

ABSTRACT

BNT162b2, a nucleoside-modified mRNA formulated in lipid nanoparticles that encodes the SARS-CoV-2 spike glycoprotein (S) stabilized in its prefusion conformation, has demonstrated 95% efficacy in preventing COVID-191. Here we extend a previous phase-I/II trial report2 by presenting data on the immune response induced by BNT162b2 prime-boost vaccination from an additional phase-I/II trial in healthy adults (18-55 years old). BNT162b2 elicited strong antibody responses: at one week after the boost, SARS-CoV-2 serum geometric mean 50% neutralizing titres were up to 3.3-fold above those observed in samples from individuals who had recovered from COVID-19. Sera elicited by BNT162b2 neutralized 22 pseudoviruses bearing the S of different SARS-CoV-2 variants. Most participants had a strong response of IFNγ+ or IL-2+ CD8+ and CD4+ T helper type 1 cells, which was detectable throughout the full observation period of nine weeks following the boost. Using peptide-MHC multimer technology, we identified several BNT162b2-induced epitopes that were presented by frequent MHC alleles and conserved in mutant strains. One week after the boost, epitope-specific CD8+ T cells of the early-differentiated effector-memory phenotype comprised 0.02-2.92% of total circulating CD8+ T cells and were detectable (0.01-0.28%) eight weeks later. In summary, BNT162b2 elicits an adaptive humoral and poly-specific cellular immune response against epitopes that are conserved in a broad range of variants, at well-tolerated doses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adolescent , Adult , BNT162 Vaccine , CD8-Positive T-Lymphocytes/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunoglobulin G/immunology , Immunologic Memory , Interferon-gamma/immunology , Interleukin-2/immunology , Male , Middle Aged , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Young Adult
2.
Nature ; 586(7830): 594-599, 2020 10.
Article in English | MEDLINE | ID: covidwho-1091471

ABSTRACT

An effective vaccine is needed to halt the spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. Recently, we reported safety, tolerability and antibody response data from an ongoing placebo-controlled, observer-blinded phase I/II coronavirus disease 2019 (COVID-19) vaccine trial with BNT162b1, a lipid nanoparticle-formulated nucleoside-modified mRNA that encodes the receptor binding domain (RBD) of the SARS-CoV-2 spike protein1. Here we present antibody and T cell responses after vaccination with BNT162b1 from a second, non-randomized open-label phase I/II trial in healthy adults, 18-55 years of age. Two doses of 1-50 µg of BNT162b1 elicited robust CD4+ and CD8+ T cell responses and strong antibody responses, with RBD-binding IgG concentrations clearly above those seen in serum from a cohort of individuals who had recovered from COVID-19. Geometric mean titres of SARS-CoV-2 serum-neutralizing antibodies on day 43 were 0.7-fold (1-µg dose) to 3.5-fold (50-µg dose) those of the recovered individuals. Immune sera broadly neutralized pseudoviruses with diverse SARS-CoV-2 spike variants. Most participants had T helper type 1 (TH1)-skewed T cell immune responses with RBD-specific CD8+ and CD4+ T cell expansion. Interferon-γ was produced by a large fraction of RBD-specific CD8+ and CD4+ T cells. The robust RBD-specific antibody, T cell and favourable cytokine responses induced by the BNT162b1 mRNA vaccine suggest that it has the potential to protect against COVID-19 through multiple beneficial mechanisms.


Subject(s)
Antibodies, Viral/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Th1 Cells/immunology , Viral Vaccines/immunology , Adult , Antibodies, Neutralizing/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Cytokines/immunology , Female , Germany , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Pandemics , Th1 Cells/cytology , Viral Vaccines/administration & dosage , Viral Vaccines/adverse effects , Young Adult
4.
J Immunol Methods ; 490: 112958, 2021 03.
Article in English | MEDLINE | ID: covidwho-1012442

ABSTRACT

The current Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) pandemic is a public health emergency of international concern. Sensitive and precise diagnostic tools are urgently needed. In this study, we developed a SARS-CoV-2 spike (S1) protein enzyme-linked immunosorbent assay (ELISA) to detect SARS-CoV-2-specific antibodies. The SARS-CoV-2 S1 ELISA was found to be specific [97.8% (95% CI, 96.7% - 98.5%)], reproducible and precise (intra-assay coefficient of variability (CV) 5.3%, inter-assay CV 7.9%). A standard curve and the interpolation of arbitrary ELISA units per milliliter served to reduce the variability between different tests and operators. Cross-reactivity to other human coronaviruses was addressed by using sera positive for MERS-CoV- and hCoV HKU1-specific antibodies. Monitoring antibody development in various samples of twenty-three and single samples of twenty-nine coronavirus disease 2019 (COVID-19) patients revealed seroconversion and neutralizing antibodies against authentic SARS-CoV-2 in all cases. The comparison of the SARS-CoV-2 (S1) ELISA with a commercially available assay showed a better sensitivity for the in-house ELISA. The results demonstrate a high reproducibility, specificity and sensitivity of the newly developed ELISA, which is suitable for the detection of SARS-CoV-2 S1 protein-specific antibody responses.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Epithelial Cells/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , Antibodies, Neutralizing/blood , Chlorocebus aethiops , Enzyme Assays , Enzyme-Linked Immunosorbent Assay , Humans , Reproducibility of Results , Sensitivity and Specificity , Seroconversion , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL